HTML interactive plot showing the hourly energy cost. Also,
a comparison between the original scenario is done when
original_df is not NULL.
Usage
plot_net_power(
df,
original_df = NULL,
import_capacity = NULL,
export_capacity = NULL,
colors = NULL,
...
)Arguments
- df
tibble, with columns
datetime,consumption,production. Optional columns:import_capacityandexport_capacityfor dynamic capacities.- original_df
tibble with same columns than
dfcorresponding to the original scenario (e.g. without flexibility)- import_capacity
numeric, maximum power to import from the grid. Not used when
dfcontains a column with the same name.- export_capacity
numeric, maximum power to export to the grid (positive). Not used when
dfcontains a column with the same name.- colors
named list with variable names and colors. For example: colors_def <- list( "production" = "orange", "consumption" = "navy", "net" = "purple", "import_capacity" = "brown", "export_capacity" = "brown" )
- ...
extra arguments to pass to timefully::plot_ts function
Examples
df <- dplyr::select(
energy_profiles,
datetime,
production = solar,
consumption = building
)
df <- dplyr::slice_head(df, n = 300)
head(df)
#> # A tibble: 6 × 3
#> datetime production consumption
#> <dttm> <dbl> <dbl>
#> 1 2023-01-01 00:00:00 0 2.61
#> 2 2023-01-01 00:15:00 0 2.42
#> 3 2023-01-01 00:30:00 0 2.23
#> 4 2023-01-01 00:45:00 0 2.04
#> 5 2023-01-01 01:00:00 0 1.85
#> 6 2023-01-01 01:15:00 0 1.78
plot_net_power(df)
# Build another random building profile
building_variation <- rnorm(nrow(df), mean = 0, sd = 1)
df2 <- dplyr::mutate(df, consumption = consumption + building_variation)
plot_net_power(df2, original_df = df)
