HTML interactive plot showing the hourly energy cost. Also,
a comparison between the original scenario is done when
original_df
is not NULL
.
Arguments
- df
tibble, with columns
datetime
,consumption
,production
,price_imported
andprice_exported
. Ifimbalance = TRUE
, then columnsdemand_baseline
,demand_final
,price_turn_up
andprice_turn_down
are also required.- original_df
tibble with same columns than
df
corresponding to the original scenario (e.g. without flexibility).- ...
extra arguments to pass to dygraphs::dyOptions function.
Examples
df <- dplyr::select(
energy_profiles,
datetime,
production = solar,
consumption = building,
price_imported,
price_exported
)
df <- dplyr::slice_head(df, n = 300)
head(df)
#> # A tibble: 6 × 5
#> datetime production consumption price_imported price_exported
#> <dttm> <dbl> <dbl> <dbl> <dbl>
#> 1 2023-01-01 00:00:00 0 2.61 -0.00146 0.025
#> 2 2023-01-01 00:15:00 0 2.42 -0.00146 0.025
#> 3 2023-01-01 00:30:00 0 2.23 -0.00146 0.025
#> 4 2023-01-01 00:45:00 0 2.04 -0.00146 0.025
#> 5 2023-01-01 01:00:00 0 1.85 -0.00152 0.025
#> 6 2023-01-01 01:15:00 0 1.78 -0.00152 0.025
plot_energy_cost(df)
# Build another random building profile
building_variation <- rnorm(nrow(df), mean = 0, sd = 1)
df2 <- dplyr::mutate(df, consumption = consumption + building_variation)
plot_energy_cost(df2, original_df = df)