Skip to contents

The energy income (in Euros) based on the difference between the baseline and final power profile for a certain demand. The difference represents the optimal changes due to flexibility, so this function calculates the income from applying this demand-side flexibility.

Usage

get_imbalance_income(df)

Arguments

df

tibble, with columns datetime, demand_baseline, demand_final, price_turn_up and price_turn_down

Value

tibble

Examples

df <- dplyr::select(
  energy_profiles,
  datetime,
  demand_baseline = building,
  price_turn_up,
  price_turn_down
)

# Build another random consumption profile
building_variation <- rnorm(nrow(df), mean = 0, sd = 1)
df <- dplyr::mutate(
  df, demand_final = demand_baseline + building_variation
)
head(df)
#> # A tibble: 6 × 5
#>   datetime            demand_baseline price_turn_up price_turn_down demand_final
#>   <dttm>                        <dbl>         <dbl>           <dbl>        <dbl>
#> 1 2023-01-01 00:00:00            2.61        0               0.209         1.21 
#> 2 2023-01-01 00:15:00            2.42        0               0.0233        2.68 
#> 3 2023-01-01 00:30:00            2.23        0               0.0256       -0.203
#> 4 2023-01-01 00:45:00            2.04        0               0.0406        2.04 
#> 5 2023-01-01 01:00:00            1.85        0.0328          0.0406        2.48 
#> 6 2023-01-01 01:15:00            1.78        0.0351          0             2.93 

head(get_imbalance_income(df))
#> # A tibble: 6 × 9
#>   datetime            demand_baseline price_turn_up price_turn_down demand_final
#>   <dttm>                        <dbl>         <dbl>           <dbl>        <dbl>
#> 1 2023-01-01 00:00:00            2.61        0               0.209         1.21 
#> 2 2023-01-01 00:15:00            2.42        0               0.0233        2.68 
#> 3 2023-01-01 00:30:00            2.23        0               0.0256       -0.203
#> 4 2023-01-01 00:45:00            2.04        0               0.0406        2.04 
#> 5 2023-01-01 01:00:00            1.85        0.0328          0.0406        2.48 
#> 6 2023-01-01 01:15:00            1.78        0.0351          0             2.93 
#> # ℹ 4 more variables: demand_diff <dbl>, demand_turn_up <dbl>,
#> #   demand_turn_down <dbl>, income <dbl>